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Sobolev Spaces

Wm,p(Ω) = {u ∈ Lp(Ω) |Dαu ∈ Lp(Ω) ∀|α| ≤ m}

For example

L2(Ω) = {u |
∫
Ω u2dΩ < ∞}

H1(Ω) = {u |Dαu ∈ L2(Ω), |α| ≤ 1}

Norm for a function g belonging to Hm(Ω):

‖g‖2
m =

∑
|α|≤m

∫
Ω(Dαg)2dΩ

Sobolev spaces related to the Navier-Stokes equations:

L2
0(Ω) = {u ∈ L2(Ω) |

∫
Ω udΩ = 0}

H1
0(Ω) = {u ∈ H1(Ω) |u = 0 on Γ}

H̃1(Ω) = {u ∈ H1(Ω) |
∫
Ω udΩ = 0}
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Curls and Vector Products.

Curl operator in 3D:

curl u = ∇× u

Curl operator(s) in 2D:

curlω =

 ωy

−ωx

 and curlu = u2x − u1y .

“Vector product” in 2D:

φ −→ (0, 0, φ)

u −→ (u1, u2, 0)

v −→ (v1, v2, 0)

then we define:

φ× u → φ

 −u2

u1


u× v → u1v2 − u2v1

Vorticity in 3D/2D:

ω = curl u (= ∇× u)

ω = curlu (= ∇× u)
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What is a Least Squares Method

Boundary value problem

LU = F in Ω
RU = 0 on Γ

where L : X 7→ Y; X and Y are Hilbert spaces.

1. Least squares functional

J(U) = (LU − F,LU − F )Y = ‖LU − F‖2
Y .

2. Least squares principle

Seek U ∈ X such that J(U) ≤ J(V ) ∀V ∈ X.

3. Euler-Lagrange equation

δJ(U) = lim
ε→0

d

dε
J(U + εV ) = 0 ∀V ∈ X .

Equivalent variational problem

Seek U ∈ X such that

Q(U ; V ) = F(V ) for all V ∈ X.
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Existence of minimizers.

Assume the a priori estimate

‖U‖X ≤ C‖LU‖Y .

Then Q(·; ·) is coercive on X×X:

Q(U ; U) = (LU,LU)Y = ‖LU‖2
Y ≥ C‖U‖2

X .

=⇒ Existence and uniqueness of the minimizer will follow
from the Lax-Milgram Lemma, if one can establish an
a priori estimate for the PDE.

4. Discretization

Choose Xh ⊂ X and then solve the problem

Seek Uh ∈ Xh such that

Q(Uh; V h) = F(V h) for all V h ∈ Xh.

• Typically, X is a Sobolev space constrained by the
boundary conditions.

• Discrete problem is equivalent to a linear system hav-
ing symmetric, positive definite matrix.

• Approximations are optimaly accurate.
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Least Squares Strategy: How and Why

1. Transformation of the original PDE or system of PDEs
to a first order system:

=⇒ Discretization by C0 finite elements may be pos-
sible.

=⇒ Direct and optimall approximations of physically
important fields, e.g., vorticity, stresses.

2. Identification of spaces X and Y such that an a priori
estimate holds and, formulation of the LS functional
for the (first order) system:

=⇒ Existence and uniqueness of the minimizers

=⇒ Stability of the discretizations is guaranteed by
the inclusion Xh ⊂ X and inf-sup (LBB) type
conditions are not required for X

=⇒ Discretization results in linear systems with sym-
metric, positive definite matrices

=⇒ Discrete equations can be solved by robust itera-
tive methods (e.g., CG methods)

=⇒ Assembly free methods are feasible.
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Applications of least squares methods

• Least squares finite element methods are based on
minimization principle:

=⇒ very competitive when Galerkin formulation cor-
responds to a saddle point optimization, because
inf-sup (LBB) condition is avoided.

• Boundary conditions can be imposed in a weak sense
by including into the functional the term

‖RU −G‖2
Γ

=⇒ Approximating functions need not satisfy the es-
sential boundary conditions.

Examples of LS applications

• Stationary, incompressible flow

• Time dependent incompressible flow

• Convection-diffusion problems

• Purely hyperbolic problems
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LS References

General

1970,73 - Bramble, Schatz (LS for 2mth order BVP)

1973 - Baker (Simplified proofs for Bramble, et.al.)

1977 - Jesperson (LS for systems associated with elliptic
PDE)

1979 - Glowinski et. al. (LS in H−1 norm)

1979 - Fix, Gunzburger, Nicolaides (LS for div - grad
systems)

1979 - Wendland (LS for Petrovski elliptic systems)

1981 - Fix, Stephan (LS for domains with corners)

1985 - Aziz, Kellog, Stephens (LS for ADN systems)

1987 - Chang, Gunzburger (LSFEM for first order sys-
tems in 3-D)

1993 - Pehlivanov, Carey, Lazarov (LS for ODE’s)

1994 - Lazarov, Manteufell, McCormick (FOSLS: Hdiv

norms)

1994 - Bramble, Lazarov, Pasciak (LS in H−1 norm)
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Convection-diffusion and hyperbolic problems

1992 - Chen (semidiscrete LS)

1994 - Jiang (iteratively reweighted LS)

1994 - Tsang (LS for advective transport)

LS for incompressible viscous flows

1979 - Glowinski et. al. (LS for primitive variable Navier-
Stokes in H−1 norms)

1990 - Chang, Jiang (LS for VVP Stokes)

1990 - Chang, Povinelli (LS in 3D)

1992 - Lefebvre, Peraire and Morgan (LS for VVP Navier-
Stokes, 3D)

1993 - Bochev, Gunzburger (LS for VVP Stokes)

1993 - Bochev, Gunzburger (LS for velocity-pressure-
stress Stokes)

1994 - Bochev (LS for VVP Navier-Stokes)

1994 - Bochev, Gunzburger (WLS for VVP Navier-Stokes)
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Velocity-Vorticity-Pressure Navier-Stokes
Equations

Differential equations in 2D

νcurlω + grad r + ω × u = f in Ω → 2

curlu− ω = 0 in Ω → 1

divu = 0 in Ω → 1

Differential equations in 3D

νcurlω + grad r + ω × u = f in Ω → 3

curl u− ω = 0 in Ω → 3

divu = 0 in Ω → 1 .

Boundary conditions

RU = 0 on Γ

• u - velocity

• 2D: ω = curlu; 3D: ω = curl u - vorticity

• r = p + 1/2|u|2 - total head, (p = pressure)
∫
Ω r dΩ = 0

• ν = 1/Re - kinematic viscosity

• f - body force
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The ADN Theory

• Success of the LS method depends on the proper choice
of the spaces X and Y ( coercivity!)

• The spaces X and Y should be such that an a priori
estimate holds for the linearized system

• The ADN theory identifies the spaces in which a pri-
ori estimates of the form ‖U‖X ≤ C‖LU‖Y hold for
solutions of elliptic BVP

• The norms appearing in these estimates are chosen so
that the operator L and boundary operator R satisfy
a certain precise condition known as the complement-
ing condition.

• The complementing condition guarantees that the
boundary operator R is compatible with the operator
L i.e., that the BVP is well-posed in the spaces X and
Y.

• Different boundary conditions may result in different
a priori estimates, i.e., the choice of X and Y may
depend on R.
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In two-dimensions:

• Four equations and unknowns

• Elliptic system of total order 4

• Needs 2 conditions on Γ; same as for the (u, p) Navier-
Stokes in 2D: can use the same R.

In three-dimensions

• Seven equations and unknowns;

• The VVP system cannot be elliptic in the sense of
Agmon, Douglas and Nirenberg because
detLP (ξ + τξ′) = 0 will have a real root.

To derive a well-posed system:

• We add a seemingly redundant equation and a new
“slack” variable φ:

div ω = 0 in Ω ;

curl u− ω + gradφ = 0 in Ω .

• Elliptic system of total order 8

• Needs 4 conditions on Γ; one more than the (u, p)
Navier-Stokes in 3D: must supplement R by an ad-
ditional condition on Γ!
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Principal parts and a priori estimates

s1 ωy rx 0 0
s2 −ωx ry 0 0
s3 −ω 0 −u1y u2x

s4 0 0 u1x u2y

s/t t1 t2 t3 t4

• si ≤ 0 determine norms for the data

• tj ≥ 0 determine norms for the solution

• degLij ≤ si + tj

• LP = {Lij | degLij = si + tj}

The ADN a priori estimates

• LP is uniformly elliptic

• LP satisfies the Supplementary Condition (2D)

• BCs satisfy the Complementing Condition

‖U‖X =
n∑

i=1
‖vj‖tj ≤ C

n∑
i=1
‖fi‖−si

= C‖LU‖Y
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Classification of the Boundary Conditions

The principal part LP of the VVP linearized equations is
not unique! There are two sets of indices such that LP

1

and LP
2 are uniformly elliptic.

Type 1 BC: CC holds with

LP
1 =


curlω + grad r

curlu
divu


s1 = s2 = 0︸ ︷︷ ︸

momentum

, s3 = s4 = 0 in 2D ,

s1 = . . . = s4 = 0︸ ︷︷ ︸
momentum and redundant

; s5 = . . . = s8 = 0 in 3D .

Example: RU = (u · n, r)

Type 2 BC: CC holds with

LP
2 =


curlω + grad r
−ω + curlu

divu


s1 = s2 = 0︸ ︷︷ ︸

momentum

, s3 = s4 = −1 in 2D ,

s1 = . . . = s4 = 0︸ ︷︷ ︸
momentum and redundant

; s5 = . . . = s8 = −1 in 3D .

Example: RU = u
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The Modified Navier-Stokes Equations:

In two-dimensions

Let ω0, r0 and u0 solve

curlω +
1

ν
grad r =

1

ν
f in Ω

curlu− ω = 0 in Ω

divu = 0 in Ω

RU = 0 on Γ

Least squares methods will be formulated for

curlω + grad r + ν−1(ω0 × u0)+

ν−1(ω0 × u + ω × u0 + ω × u) = 0 in Ω

curlu− ω = 0 in Ω

divu = 0 in Ω

RU = 0 on Γ

In three-dimensions

The “redundant” equation

div ω = 0

must be added for the stability of the method. The slack
variable is identically zero and can be ignored
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LS for the Navier-Stokes Equations

Least squares functional:

J(ω,u, r) =

=
1

2

(
‖curlω + a(ω,u) + b(ω,u, ω0,u0) + grad r‖2

0

+ ‖curlu− ω‖2
s + ‖divu‖2

s

)
,

where s = 0, 1 for Type 1,2 BCs and

b(ω,u, ξ,v) =
1

ν
(ω × u + ξ × v)

a(ω,u) = b(ω0,u, ω,u0) .

Euler-Lagrange equation

Seek (ω,u, r) ∈ Xs such that

Q((ω,u, r); (ξ,v, q)) =

= (curlω + grad r + a(ω,u) + b(ω0,u0, ω,u),

curl ξ + grad q + a(ξ,v) + b(ξ,u, ω,v))0
+ (curlu− ω, curlv − ξ)s
+ (divu, divv)s = 0 for all (ξ,v, q) ∈ Xs .

where

Xs = [H1(Ω)× H̃1(Ω)×Hs+1(Ω)2] ∩ [RU = 0] .
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Least Squares Finite Element Method

1. Choose the discrete space Xh
s ⊂ Xs:

2. Solve the Euler-Lagrange equation

Seek Uh = (ωh,uh, rh) ∈ Xh
s such that

Q(Uh; V h) = 0 ∀V h = (ξh,vh, qh) ∈ Xh
s .

Implementation Issues

The Euler-Lagrange equation is a nonlinear system that
must be solved in an iterative manner.

Newton’s method:

• Locally has quadratic convergence

• In a neighborhood of a minimizer the Hessian is
symmetric and positive definite.

=⇒ Continuation methods are required to get an initial
approximation inside the attraction ball:

• Continuation along the constant: simple,
but cannot handle turning points

• Continuation along the tangent: can be made
to handle turning points.
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Navier-Stokes Equations:
Advantages of the Least Squares Methods

• Approximating spaces are not subject to the LBB (
inf-sup) condition

• All unknowns can be approximated by the same finite
element space

• Newton linearization results in symmetric, positive
definite linear systems, at least in the neighborhood
of a solution:

=⇒ Using a properly implemented continuation (with
respect to the Reynolds number) techniques, a so-
lution method can be devised that will only en-
counter symmetric, positive definite linear systems
in the solution process

=⇒ Robust iterative methods can be used

=⇒ A solution method that is assembly free even at
an element level can be devised

• No artificial boundary conditions for ω need be in-
troduced at boundaries at which u is specified

• Accurate vorticity approximations are obtained.
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Error Analysis of the Least Squares Method:
Abstract Approximation Theory

Abstract problem (Girault, Raviart, 1984)

F (λ, U) ≡ U + T ·G(λ, U) = 0 ,

where Λ ⊂ R is compact interval; X and Y are Banach
spaces and T ∈ L(Y,X).

Regular branch of solutions

Assume that {(λ, U(λ) |λ ∈ Λ} is such that

F (λ, U(λ)) = 0 for λ ∈ Λ .

1. The set {(λ, U(λ) |λ ∈ Λ} is called branch of solu-
tions if the map λ → U(λ) is a continuous function
from Λ into X

2. The set {(λ, U(λ) |λ ∈ Λ} is called regular branch if
DUF (λ, U(λ)) is an isomorphism from X into X for
all λ ∈ Λ.
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Discretizations

• Choose a discrete subspace Xh ⊂ X;

• Choose Th ∈ L(Y,Xh) to be an approximating oper-
ator for the linear part T of F .

• Then, consider the approximate problem

F h(λ, Uh) ≡ Uh + Th ·G(λ, Uh) = 0 .

• Approximation in F h is introduced by approximating
only the linear operator T :

=⇒ F h has the same differentiability properties as the
nonlinear map F .
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Abstract approximation result

We make the followng assumptions:

A1. {(λ, Ũ(λ))|λ ∈ Λ} is a branch of regular solutions;

A2. G is a C2 mapping G : Λ×X 7→ Y;

A3. All second derivatives D2
UG are bounded on all bounded

subsets of Λ×X;

A4. There exists a space Z ⊂ Y, with a continuous
imbedding, such that

DUG(λ, U) ∈ L(X,Z) ∀U ∈ X ;

A5. The operator Th satisfies conditions

lim
h→0

‖(T − Th)g‖X = 0 ∀g ∈ Y ;

lim
h→0

‖T − Th‖L(Z,X) = 0 .

Then, for h sufficiently small there exists a unique C2

function λ 7→ Uh ∈ Xh, s.t. {(λ, Uh(λ))|λ ∈ Λ} is a
branch of regular solutions of F h(λ, Uh) = 0 and

‖Uh − U‖X ≤ C‖(T − Th) ·G(λ, U)‖X ∀λ ∈ Λ
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Application to the least squares method

Q((ω,u, r); (ξ,v, q))s =

= (curlω + grad r, curl ξ + grad q)0
+ (curlu− ω, curlv − ξ)s + (divu, divv)s .

Ys = H−1(Ω)×H−1(Ω)×H−1−s(Ω)2

The operator T/Th:

∀g ∈ Ys ; Tg = U ∈ Xs if and only if U solves

Seek U ∈ Xs such that
Q(U ; V )s = (g, V ) ∀V ∈ Xs .

For Th take Uh, V h ∈ Xh
s . T and Th are the Stokes

LS solution operator and its discretization.

The operator G:

∀U ∈ Xs ; G(λ, U) = g ∈ Ys if and only if

(curlω + grad r + a(ω,u) + b(ω,u, ω0,u0),

b(ξ,u0, ξ,u) + b(ω0,v, ω,v))0
+ (a(ω,u) + b(ω,u, ω0,u0), curl ξ + grad q)0
= (g1, ξ)0 + (g2,v)0 + (g3, q)0 ∀(ξ,v, q) ∈ Xs .
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With the identification

U = (ω,u, r), Uh = (ωh,uh, rh) and λ =
1

ν

the Euler-Lagrange equation and its discretization can be
cast into the canonical forms

U + T ·G(λ, U) = 0 and Uh + Th ·G(λ, Uh) = 0

Concerning the error estimates one can show that the
assumptions [A1.] - [A5.] hold. As a result one can prove
the following:

Theorem 1 Assume that {(λ, Ũ(λ))|λ ∈ Λ} is a reg-
ular branch of (sufficiently smooth) solutions. Then,
for h sufficiently small, the discrete Euler-Lagrange
equation has a unique branch {(λ, Uh(λ))|λ ∈ Λ} of
regular solutions such that

‖ω(λ)− ωh(λ)‖1 + ‖u(λ)− uh(λ)‖1+s

+ ‖r(λ)− rh(λ)‖1

≤ Ch (‖ω(λ)‖2 + ‖u(λ)‖2+s + ‖r(λ)‖2)

where s = 0 for Type 1 and s = 1 for Type 2 BCs.
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Table 1: Boundary Conditions

Boundary conditions 3D 2D Type

BC1 Velocity u u 2

Slack variable φ -

BC1A Velocity u u 2

Normal vorticity ω · n -

BC2 Pressure p p

Normal velocity u · n u · n 1

Normal vorticity ω · n -

Slack variable φ -

BC2A Pressure p p not well

Normal velocity u · n u · n posed in 3D

Tangential vorticity n× ω × n - 1 in 2D

BC3 Pressure p p 1 in 2D

Tangential velocity n× u× n u · t 2 in 3D

Slack variable φ -

BC3A Pressure p p

Tangential velocity n× u× n u · t 1

Normal vorticity ω · n -

BC4 Normal velocity u · n u · n
Tangential vorticity n× ω × n ω 1

Slack variable φ -

BC5 Tangential velocity n× u× n u · t 1

Tangential vorticity n× ω × n ω

BC6 Vorticity ω ω not well

Pressure p p posed
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